How Ordinary Elimination Became Gaussian Elimination
نویسنده
چکیده
Newton, in an unauthorized textbook, described a process for solving simultaneous equations that later authors applied specifically to linear equations. This method — that Newton did not want to publish, that Euler did not recommend, that Legendre called “ordinary,” and that Gauss called “common” — is now named after Gauss: “Gaussian” elimination. (One suspects, he would not be amused.) Gauss’s name became associated with elimination through the adoption, by professional computers, of a specialized notation that Gauss devised for his own least squares calculations. The notation allowed elimination to be viewed as a sequence of arithmetic operations that were repeatedly optimized for hand computing and eventually were described by matrices. In einem unautorisierten Textbuch beschreibt Newton den Prozess für die Lösung von simultanen Gleichungen, den spätere Autoren speziell für lineare Gleichungen anwandten. Diese Methode — welche Newton nicht veröffentlichen wollte, welche Euler nicht empfahl, welche Legendre “ordinaire” nannte, und welche Gauß “gewöhnlich” nannte — wird nun nach Gauß benannt: Gaußsches Eliminationsverfahren. (Man vermutet, er wäre darüber nicht amüsiert.) Die Verbindung des Gaußschen Namens mit Elimination wurde dadurch hervorgebracht, dass professionelle Rechner eine Notation übernahmen, die Gauß speziell für seine eigenen Berechnungen der kleinsten Quadrate ersonnen hatte, welche zuließ, das Elimination als eine Sequenz von arithmetischen Rechenoperationen betrachtet wurde, die wiederholt für Handrechnungen optimisiert wurden und schließlich auch durch Matrizen beschrieben wurden.
منابع مشابه
Direct Parallel Algorithms for Banded
We investigate direct algorithms to solve linear banded systems of equations on MIMD multipro-cessor computers with distributed memory. We show that it is hard to beat ordinary one-processor Gaussian elimination. Numerical computation results from the Intel Paragon are given.
متن کاملDirect Parallel Algorithms for Banded Linear Systems
We investigate direct algorithms to solve linear banded systems of equations on MIMD multiprocessor computers with distributed memory. We show that it is hard to beat ordinary one-processor Gaussian elimination. Numerical computation results from the Intel Paragon are given.
متن کاملNumerical Methods to Solve 2-D and 3-D Elliptic Partial Differential Equations Using Matlab on the Cluster maya
Discretizing the elliptic Poisson equation with homogeneous Dirichlet boundary conditions by the finite difference method results in a system of linear equations with a large, sparse, highly structured system matrix. It is a classical test problem for comparing the performance of direct and iterative linear solvers. We compare in this report Gaussian elimination applied to a dense system matrix...
متن کاملStable Pivoting for the Fast Factorization of Cauchy-Like Matrices
Recent work by Sweet and Brent on the fast factorization of Cauchy-like matrices through a fast version of Gaussian elimination with partial pivoting has uncovered a potential stability problem which is not present in ordinary Gaussian elimination: excessive growth in the generators used to represent the matrix and its Schur complements can lead to large errors. A natural way to x this problem ...
متن کاملHow Elegant Code Evolves with Hardware: The Case of Gaussian Elimination
The increasing availability of advanced-architecture computers, at affordable costs, has had a significant effect on all spheres of scientific computation. In this chapter, we'll show the need for designers of computing algorithms to make expeditious and substantial adaptations to algorithms, in reaction to architecture changes, by closely examining one simple but important algorithm in mathema...
متن کامل